Spectral and Pseudospectral Approximations Using Hermite Functions: Application to the Dirac Equation

نویسندگان

  • Ben-yu Guo
  • Jie Shen
  • Cheng-long Xu
چکیده

Ben-yu Guo a,∗, Jie Shen b,c,∗∗ and Cheng-long Xu d a School of Mathematical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China E-mail: [email protected] b Department of Mathematics, Xiamen University, Xiamen, 361005, P.R. China c Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA E-mail: [email protected] d Department of Applied Mathematics, Tongji University, Shanghai, 200092, P.R. China E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method

Based on a new approximation method, namely pseudospectral method, a solution for the three order nonlinear ordinary differential laminar boundary layer Falkner-Skan equation has been obtained on the semi-infinite domain. The proposed approach is equipped by the orthogonal Hermite functions that have perfect properties to achieve this goal. This method solves the problem on the semi-infinite do...

متن کامل

On Spectral Approximations Using Modified Legendre Rational Functions: Application to the Korteweg-deprotect unskip penalty @M ignorespaces Vries Equation on the Half Line

A new set of modified Legendre rational functions which are mutually orthogonal in L2(0,+∞) is introduced. Various projection and interpolation results using the modified Legendre rational functions are established. These results form the mathematical foundation of related spectral and pseudospectral methods for solving partial differential equations on the half line. A spectral scheme using th...

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2003